Optimizing Sand-Based Biofilm Biosorption for Copper (Cu) Mitigation: Mechanisms, Optimal Conditions, and Environmental Implications

Authors

  • Rosna Universitas Halu Oleo Author
  • Ahmad Zaeni Universitas Halu Oleo Author
  • Laode Kadidae Universitas Halu Oleo Author
  • Zainal Syam Arifin Universitas Halu Oleo Author

DOI:

https://doi.org/10.70392/jpns.v2i1.3746

Keywords:

heavy metal, copper, biosorption, biofilm, wastewater

Abstract

Copper (Cu) pollution from industrial wastewater has emerged as a critical environmental issue due to its toxicity, bioaccumulation, and persistence in aquatic ecosystems. Conventional methods for heavy metal remediation often fail to address the dual challenge of high costs and environmental sustainability, necessitating alternative approaches. This study explores the use of sand-based biofilms for the biosorption of Cu ions, leveraging the natural ability of biofilms to adsorb and immobilize heavy metals. The research focuses on optimizing biosorption conditions, including contact time, initial Cu concentration, and pH, while evaluating the broader impacts on water quality parameters such as Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), and Total Dissolved Solids (TDS).

The experimental results demonstrated that biosorption efficiency peaked at a contact time of 1 day, an initial Cu concentration of 100 mg/L, and a pH of 8. At these optimal conditions, the biofilm achieved a biosorption capacity of 39.7 mg/L for Cu ions. Moreover, the treatment significantly improved water quality, reducing COD by 77.06%, BOD by 78.92%, and TDS by 30%. The mechanism of biosorption was influenced by the availability of functional groups within the extracellular polymeric substance (EPS) of the biofilm, which provided binding sites for Cu ions. The influence of pH was particularly notable, as it regulated the ionic interactions between Cu2+ and the biofilm matrix.

This study not only confirms the effectiveness of biofilm-based biosorption for heavy metal mitigation but also highlights its dual role in reducing organic and inorganic pollutants in wastewater. The use of sand as a substrate for biofilm growth adds an element of scalability and economic feasibility, making it an attractive solution for industrial applications. The findings underscore the potential of this eco-friendly approach to contribute to sustainable wastewater management, addressing both environmental and public health concerns associated with heavy metal contamination. Future research could explore the application of this method for other heavy metals and its integration into existing wastewater treatment systems.

References

Ullah, S., Naeem, A., Calkaite, I., Hosney, A., Depar, N., Barcauskaite, K. Zinc (Zn) mitigates copper (Cu) toxicity and retrieves yield and quality of lettuce irrigated with Cu and Zn-contaminated simulated wastewater. Environmental Science and Pollution Research 2023,30(19), 54800-54812. doi:10.1007/s11356-023-26250-8

Ankita, Chaudhary, A., Devi, R., Sharma, N. Spectrophotometric Investigations on Some Heavy Metals Cu, Ni, Co, and Mn to Evaluate Their Environmental Toxicity. Journal of Analytical Chemistry 2024, 79(7), 914-922. doi:10.1134/S106193482470028X

Garncarek-Musiał, M., Maruszewska, A., Kowalska-Góralska, M., Mijowska, E., Zielinkiewicz, K., Dziewulska, K. Comparative study of influence of Cu, CuO nanoparticles and Cu2+ on rainbow trout (Oncorhynchus mykiss W.) spermatozoa. Sci Rep 2024, 14(1), 22242. doi:10.1038/s41598-024-72956-1

Nagai, T., Kamo, M. Modeling the effects of pH and hardness on the toxicity of zinc, copper, cadmium, and nickel to the freshwater diatom Navicula pelliculosa. Limnology, 2025, 1-10. Published online 2025. doi:10.1007/s10201-024-00777-2

Wang, Y., Yan, Q., Shi, Y., Long, M. Copper Toxicity in Animals: A Review. Biol Trace Elem Res 2024, Published online 2024. doi:10.1007/s12011-024-04345-8

Biedunkova, O., Kuznietsov, P. Dataset on heavy metal pollution assessment in freshwater ecosystems. Sci Data 2024, 11(1), 1241. doi:10.1038/s41597-024-04116-z

Seo, C., Lee, J.W., Jeong, J.W., Kim, T.S., Lee, Y., Gang, G., Lee, S.G. Current technologies for heavy metal removal from food and environmental resources. Food Sci Biotechnol 2024, 33(2), 287-295. doi:10.1007/s10068-023-01431-w

Li, S., Yan, X., Zhang, M., Sun, Q., Zhu, X. Microbial remediation technology for heavy metal contamination of mine soil. Chemoecology 2024, 34(2), 47-59. doi:10.1007/s00049-024-00399-1

Ding, J., Hu, J. Soil heavy metal pollution and health risk assessment around Wangchun Industrial Park, Ningbo, China. J Soils Sediments 2024, 24(7), 2613-2622. doi:10.1007/s11368-024-03806-w

Karthikayini, S., Chandrasekaran, A., Narasimhan, C.L. Heavy metal contamination in soils of industrial estates of Tamil Nadu, India and source identification by magnetic susceptibility. Environ Monit Assess 2024, 196(12), 1171. doi:10.1007/s10661-024-13339-x

Borgohain, D., Lanong, S., Jaishi, H.P. Heavy metal contamination and health risks in ground water at Byrnihat industrial area: urgent need for remediation and public health safeguards. Proceedings of the Indian National Science Academy. 2024, 90(4), 931-942. doi:10.1007/s43538-024-00273-2

Tabagari, I., Varazi, T., Dumbadze, N., Kurashvili, M., Pruidze, M., Khatisashvili, G., Karpenko, O., Koretska, N. Biological two-stage treatment technology for mitigating mining-related heavy metal pollution in Georgian rivers. Discover Water 2024, 4(1), 87. doi:10.1007/s43832-024-00128-3

John, P.M., Gopinath, A. An Overview of Heavy Metal Pollution in Aquatic Sediments Around the World BT-Contaminated Land and Water: Remediation and Management. In: Alshemmari H, Hashmi MZ, Kavil YN, Shu-hong W, eds. Springer International Publishing, 2024, 119-129. doi:10.1007/978-3-031-65129-8_9

Sarvestani, R.A., Aghasi, M., Niknejad, H. Health risk assessment of trace elements (Pb, Cd, Cu, Fe) in agricultural soil in Kerman City, Southeast of Iran. Natural Hazards 2024, 120(1), 339-367. doi:10.1007/s11069-023-06218-0

Boahen, E. Heavy metal contamination in urban roadside vegetables: origins, exposure pathways, and health implications. Discover Environment 2024, 2(1), 145. doi:10.1007/s44274-024-00182-7

Jangirh, R., Mondal, A., Yadav, P., Datta, A., Saxena, P., Mandal, T.K. Characterization of Road Dust in Delhi: Heavy Metal Analysis, Health Risks, and Sustainability Implications. Aerosol Science and Engineering 2024, 8(4), 414-425. doi:10.1007/s41810-024-00231-x

Samani, M., Ahlawat, Y.K., Golchin, A., Bybordi, A., Sharma, N., Alikhani, H.A. Evaluating seasonal health risks of copper, nickel, and chromium in airborne dust. Air Qual Atmos Health 2025. Published online 2025. doi:10.1007/s11869-025-01704-9

Pet, I., Sanad, M.N., Farouz, M., Elfaham, M.M., El-Hussein, A., Abd El-sadek, M.S., Althobiti, R.A., Ioanid, A. Review: Recent Developments in the Implementation of Activated Carbon as Heavy Metal Removal Management. Water Conservation Science and Engineering 2024, 9(2), 62. doi:10.1007/s41101-024-00287-3

Twizerimana, P., Wu, Y. Overview of integrated electrocoagulation-adsorption strategies for the removal of heavy metal pollutants from wastewater. Discover Chemical Engineering 2024, 4(1), 14. doi:10.1007/s43938-024-00053-w

Machado, A.A., Valiaparampil, J.G. Unlocking the Potential of Algae for Heavy Metal Remediation. Water Air Soil Pollut. 2024, 235(10), 629. doi:10.1007/s11270-024-07436-3

Waqeel, J., Khan, S.T. Live Multi-metal Tolerant Bacterial Biofilm on Polyurethane Sponge for Low-cost Bioremediation of Heavy Metal from Small-scale Industry Wastewater. Int J Environ Res 2024, 19(1), 13. doi:10.1007/s41742-024-00674-7

Kucuker, M.A. Recovery of Metals from Leach Liquors: Biosorption versus Metal Sulfide Precipitation BT-Biotechnological Innovations in the Mineral-Metal Industry. In: Panda S, Mishra S, Akcil A, Van Hullebusch ED, eds. Springer International Publishing, 2024, 151-160. doi:10.1007/978-3-031-43625-3_9

Dianatdar, F., Etemadifar, Z. Recent Advances Towards Improved Microbial Bioremediation of Heavy Metal Pollution BT-Heavy Metal Remediation: Sustainable Nexus Approach. In: Kumar N, ed. Springer Nature Switzerland, 2024, 115-138. doi:10.1007/978-3-031-53688-5_6

Momin, S.C., Pradhan, R.B., Nath, J., Lalmuanzeli, R., Kar, A., Mehta, S.K. Metal sequestration by Microcystis extracellular polymers: a promising path to greener water treatment. Environmental Science and Pollution Research 2024, 31(7), 11192-11213. doi:10.1007/s11356-023-31755-3

Song, X., Yang, A., Hu, X., Ping, N.A., Cao, Y., Zhang, Q. Exploring the role of extracellular polymeric substances in the antimony leaching of tailings by Acidithiobacillus ferrooxidans. Environmental Science and Pollution Research 2023, 30(7), 17695-17708. doi:10.1007/s11356-022-23365-2

Li, Z., Zhu, X., Zhang, M., Guo, W., Wu, Q., Wang, J. Study on Adsorption Model and Influencing Factors of Heavy Metal Cu2+ Adsorbed by Magnetic Filler Biofilm BT-Proceedings of the 2nd International Conference on Innovative Solutions in Hydropower Engineering and Civil Engineering. In: Wang S, Li J, Hu K, Bao X, eds. Springer Nature Singapore, 2023, 503-513.

Cui, L., Chen, S., Cao, X., Zhang, X., Huang, X., Shibata, T., Yang, Y., Shi, L., Zhao, C., Wang, S., Yang, S. Simultaneous removal of heavy metals and inorganic nitrogen by using the biofilm of Marichromatium gracile YL28. World J Microbiol Biotechnol 2024, 41(1), 14. doi:10.1007/s11274-024-04193-7

Radojević, I.D., Jakovljević, V.D., Ostojić, A.M. A mini-review on indigenous microbial biofilm from various wastewater for heavy-metal removal - new trends. World J Microbiol Biotechnol 2023, 39(11),309. doi:10.1007/s11274-023-03762-6

Saini, P., Mishra, P. Biofilm Linked Microbial Prospecting of Bioremediation BT-Bioprospecting of Microbial Resources for Agriculture, Environment and Biochemical Industry. In: Saini P, Mishra P, eds. Springer Nature Switzerland, 2024, 87-108. doi:10.1007/978-3-031-63844-2_5

Lian, Z., Yang, Z., Song, W., Sun, M., Gan, Y., Bai, X. Characteristics of EPS from Pseudomonas aeruginosa and Alcaligenes faecalis under Cd(II) stress: changes in chemical components and adsorption performance. Environmental Science and Pollution Research 2022, 29(50), 75883-75895. doi:10.1007/s11356-022-21114-z

Marimuthu, S., Rajendran, K. Structural and Functional Characterization of Exopolysaccharide Produced by a Novel Isolate Bacillus sp. EPS003. Appl Biochem Biotechnol 2023, 195(7), 4583-4601. doi:10.1007/s12010-023-04368-2

Kauser, S., Saeed, A., Farooq, U., Hussain, A. Investigation of extracellular polymeric substances (EPS) from cyanobacteria/blue green algae and their interaction with heavy metal ions: Insights from excitation-emission matrix fluorescence spectroscopy. Biologia (Bratisl) 2024, 79(11), 3461-3473. doi:10.1007/s11756-024-01800-8

Shen, L., Yu, X., Zhou, H., Wang, J., Zhao, H., Qiu, G., Chen, Z. Optimization and mechanism studies for the biosorption of rare earth ions by Yarrowia lipolytica. Environmental Science and Pollution Research 2024, 31(39), 52118-52131. doi:10.1007/s11356-024-34660-5

Kurniawan, A., Fukuda, Y. Analysis of the electric charge properties of biofilm for the development of biofilm matrices as biosorbents for water pollutant. Energy Ecol Environ 2023, 8(1), 62-68. doi:10.1007/s40974-022-00253-6

Wu, C., Jun, W.Y., Wei, Y.S., Li, F. Enhancing cadmium biosorption capacity in E. coli through heterologous expression of metal-chelating proteins: Insights into bioremediation potential and mechanisms. J Cent South Univ 2024, 31(4), 1265-1275. doi:10.1007/s11771-024-5625-4

Ting, A.S.Y., Tiew, K.H., Song, K.P. Metal biosorption by packed-bed column of exopolymeric substance modified alginate beads for treatment of multi-metal systems. International Journal of Environmental Science and Technology 2024. Published online 2024. doi:10.1007/s13762-024-06224-0

Adegoke, A.E., Abel, O.M., Ikechukwuka, E.M., Opeyemi, A.O.M., Nifemi, A.O. Microbial Biofilm Reactor for Sustainable Wastewater Treatment BT-Green Technologies for Industrial Waste Remediation. In: Mathuriya AS, Pandit S, Singh NK, eds. Springer Nature Switzerland, 2023, 285-316. doi:10.1007/978-3-031-46858-2_14

Downloads

Published

17-03-2025

Data Availability Statement

-

How to Cite

Rosna, Zaeni, A., Kadidae, L., & Zainal Syam Arifin. (2025). Optimizing Sand-Based Biofilm Biosorption for Copper (Cu) Mitigation: Mechanisms, Optimal Conditions, and Environmental Implications. Journal of Pharmaceuticals and Natural Sciences, 2(1), 37-46. https://doi.org/10.70392/jpns.v2i1.3746